- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Zhai, Jiannan (3)
-
Ara Ghoreishi, Seyedeh Gol (1)
-
Bao, Shaowu (1)
-
Conniff, Joshua (1)
-
Furht, Borko (1)
-
Gayes, Paul (1)
-
Hallstrom, Jason (1)
-
Hallstrom, Jason O. (1)
-
Jan, Muhammad Tanveer (1)
-
Jang, Jinwoo (1)
-
Kelley, Chancey (1)
-
Moshfeghi, Sonia (1)
-
Newman, David (1)
-
Pietrafesa, Len (1)
-
Prey, Adam (1)
-
Rosselli, Monica (1)
-
Tappen, Ruth (1)
-
Yang, KwangSoo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hard-brakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.more » « less
-
Prey, Adam; Zhai, Jiannan; Kelley, Chancey; Hallstrom, Jason (, 2019 IEEE International Conference on Smart Computing (SmartSys Workshop))
-
Zhai, Jiannan; Hallstrom, Jason O.; Bao, Shaowu; Gayes, Paul; Pietrafesa, Len (, Journal of Computer and Communications)
An official website of the United States government
